DFT Tools Documentation
Release 0.0

Artem Pulkin

Apr 24, 2017

Contents

Introduction to DFT Tools

2.1 Installing
22 USING . . v v e e e e e e

Getting started
Examples

3.1 Atomic Structure e e
32 Bandstructure
33 Dataonthegrid

Package contents

4.1 dfttools i i e e
42 dfttools.parsers

Contributing to DFT Tools

Indices and tables

DFT Tools Documentation, Release 0.0

DFT Tools is a python library for parsing, post-processing and presenting numerical data generated by simulation
codes in physics and chemistry. The abbreviation ‘DFT’ comes from the denisty function theory being implemented
in these codes.

With DFT Tools you will be able to:
* parse numerical data from textual output such as band structures, data on the grid, etc.;
* manipulate the data: build supercells, calculate density of states, etc.;
¢ visualise the data;

Contents:

Contents 1

https://en.wikipedia.org/wiki/Density_functional_theory

DFT Tools Documentation, Release 0.0

2 Contents

CHAPTER 1

Introduction to DFT Tools

A number of codes implementing DFT and it’s flavors is available in the web, see Wikipedia for example. The
developers of these codes are usually scientists who never aimed to develop a user-friendly application mainly because
they are not get paid for that. Thus, to be able to use such codes one has to master several tools, among which is data

post-processing and presentation.

An average DFT code produces a set of text and binary data during the run. Typically, the data cannot be plotted
directly and one needs a program to collect this data and present it. Here is an example of a Quantum Espresso band

structure:

k = 0.0000 0.0000 0.0000 band energies (ev):

-5.8099 6.2549 6.2549 6.2549 8.8221 8.8221

k = 0.0000 0.0000 0.1000 band energies (ev):

-5.7668 5.9810 6.0722 6.0722 8.7104 9.0571

k = 0.0000 0.0000 0.2000 band energies (ev):

-5.6337 5.3339 5.6601 5.6601 8.4238 9.6301

8.8221

9.0571

9.6301

9.7232

9.9838

10.5192

With DFT Tools it can be plotted as easy as is following script:

from dfttools.simple import parse
from dfttools import presentation

from matplotlib import pyplot
with open("plot.py.data",'r') as f:

Read bands data
bands = parse(f, "band-structure") [0]

Plot bands

https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

DFT Tools Documentation, Release 0.0

presentation.matplotlib_bands (bands, pyplot.gca())
pyplot.show ()

Not only the band structure can be plotted, but atomic structure, data on the grid, etc., see examples.

4 Chapter 1. Introduction to DFT Tools

CHAPTER 2

Getting started

DFT Tools package is written in python. To be able to use it you have to download and install it locally.

Installing

The easiest way to install DFT Tools is to use pip:

’$ pip install dfttools

For a local user it can be done with a ——user option:

’$ pip install dfttools —--user

You may also download the package and use the bundled setup.py:

$ python setup.py install
$ python setup.py install —--user

The package explicitly requires numpy and numericalunits which will be automatically installed if not yet present in
your system. Also, it is recommended to install matplotlib and svgwrite for data visualisation and scipy to be able to
use some other functions. All packages are available through pip:

$ pip install matplotlib
$ pip install svgwrite
$ pip install scipy

Using

Once installed you may start using it by importing the package in your python script:

https://pypi.python.org
https://scipy.org/
https://pypi.python.org/pypi/numericalunits/
https://matplotlib.org/
https://pypi.python.org/pypi/svgwrite/
https://scipy.org/

DFT Tools Documentation, Release 0.0

’import dfttools

or just using one of the pre-set scripts:

’$ dft-plot-bands my_dft_output_file

6 Chapter 2. Getting started

CHAPTER 3

Examples

To run the examples you have to install all recommended packages, see corresponding section.

Atomic structure

With DFT Tools you can manipulate crystal structures easily: only very few lines of code required.

Example: Si unit cell

from dfttools.types import Basis, UnitCell
from dfttools.presentation import svgwrite_unit_cell

from numericalunits import angstrom as a
si_basis = Basis((3.9*a/2, 3.9%xa/2, 3.9%a/2, .5,.5,.5), kind = 'triclinic')

si_cell = UnitCell (si_basis, (.5,.5,.5), 'Si'")
svgwrite_unit_cell (si_cell, 'output.svg', size = (440,360), show_cell = True)

One can obtain a supercell by repeating the unit cell:

mult_cell = si_cell.repeated (3,3, 3)
svgwrite_unit_cell (mult_cell, 'output2.svg', size = (440,360), show_cell = True)

Arbitrary supercell is available via the corresponding function:

cubic_cell = si_cell.supercell(
(1,-1,1),
(1,1,-1),
(-1,1,1),

DFT Tools Documentation, Release 0.0

)
svgwrite_unit_cell (cubic_cell, 'output3.svg', size = (440,360), show_cell = True,
—camera = (1,1,1))

A slab is prepared easily:

slab_cell = cubic_cell.repeated(5,5,3) .isolated(0,0,10*a)
svgwrite_unit_cell (slab_cell, 'output4.svg', size = (440,360), camera = (1,1,1))

Example: Monolayer MoS2 line defect

A more complex example: monolayer MoS2 with a line defect:

from dfttools.types import Basis, UnitCell
from dfttools.presentation import svgwrite_unit_cell

from numericalunits import angstrom as a

mos2_basis = Basis|(
(3.19%a, 3.19%a, 20%a, 0,0,.5),
kind = 'triclinic'

)
d = 1.57722483162840/20

Unit cell with 3 atoms
mos2_cell = UnitCell (mos2_basis, (
(1./3,1./3,.5),
(2./3,2./3,0.5+d),
(2./3,2./3,0.5-4),
), ("Mo','S","'S"))
Rectangular supercell with 6 atoms
mos2_rectangular = mos2_cell.supercell (
(1,0,0),
(-1,2,0),
(0,0,1)
Rectangular sheet with a defect
mos2_defect = mos2_rectangular.normalized()
mos2_defect.discard((mos2_defect.values == "S") * (mos2_defect.coordinates[:,1] < .5)
% (mos2_defect.coordinates[:,2] < .5))

[

Prepare a sheet

mos2_sheet = UnitCell.stack (x ((mos2_rectangular,)*3 + (mos2_defect,) + (mos2_
—rectangular,)*3), vector = 'y')

Draw

svgwrite_unit_cell (mos2_sheet.repeated(10,1,1), 'output.svg', size = (440,360),
—camera = (1,1,0.3), camera_top = (0,0,1))

8 Chapter 3. Examples

DFT Tools Documentation, Release 0.0

Example: parsing structure data

It is also possible to obtain atomic structure from the supported files. In this particular case the file source and format
can be determined automatically (OpenMX input file).

from dfttools.presentation import svgwrite_unit_cell
from dfttools.simple import parse

Parse
with open("plot.py.data", "r") as f:
cell = parse(f, "unit-cell")

Draw
svgwrite_unit_cell (cell, 'output.svg', size = (440,360), camera = (1,0,0))

Example: Moire pattern

The Moire pattern is obtained using UnitCell.supercell.

from dfttools.types import Basis, UnitCell
from dfttools.presentation import svgwrite_unit_cell

from numericalunits import angstrom as a

graphene_basis = Basis(
(2.46%a, 2.46%a, 6.7*«a, 0,0,.5),
kind = '"triclinic'

Unit cell

graphene_cell = UnitCell (graphene_lbasis, (
(1./3,1./3,.5),
(2./3,2./3,.5),

), ('C',rCh))

Moire matching vectors
moire = [1, 26, 6, 23]

A top layer

11 = graphene_cell.supercell (
(moire[0],moire([1],0),
(-moire[l],moire[0]+moire[1],0),
(0,0,1)

A bottom layer

12 = graphene_cell.supercell (
(moire[2],moire([3],0),
(-moire[3],moire[2]+moire[3],0),
(0,0,1)

Make the basis fit
12.vectors[:2] = 1ll.vectors[:2]

3.1. Atomic structure 9

DFT Tools Documentation, Release 0.0

Draw
svgwrite_unit_cell (1l.stack (12, vector='z'"), 'output.svg', size = (440,360), camera =
—~(0,0,-1), camera_top = (0,1,0), show_atoms = False)

Band structure

The band structures can be easily plotted directly from the output files.

Example: OpenMX

In this case to retrieve the band structure we import parser dfttools.parsers.openmnx.bands explicitly.

from dfttools.parsers.openmx import bands
from dfttools import presentation

from matplotlib import pyplot
with open("plot.py.data",'r') as f:

Read bands data
b = bands (f.read()) .bands ()

Plot bands
presentation.matplotlib_bands (b, pyplot.gca())
pyplot.show ()

Example: Quantum Espresso

The Quantum Espresso files can be identified automatically via dfttools.simple.parse routine.

from dfttools.simple import parse
from dfttools import presentation

from matplotlib import pyplot
with open("plot.py.data",'r') as f:

Read bands data
bands = parse(f, "band-structure") [0]

Plot bands
presentation.matplotlib_bands (bands, pyplot.gca())
pyplot.show ()

The density of states can be plotted directly from the band structure. However, one has to note that the density
calculated from a k-point path is usually not the relevant one.

from dfttools.simple import parse
from dfttools import presentation

from matplotlib import pyplot

10 Chapter 3. Examples

DFT Tools Documentation, Release 0.0

with open("plot.py.data",'r') as f:

Read bands data
bands = parse(f, "band-structure") [0]

Prepare axes
ax_left = pyplot.subplot2grid((1,3), (0, 0), colspan=2)
ax_right = pyplot.subplot2grid((1,3), (0, 2))

Plot bands

presentation.matplotlib_bands (bands, ax_left)

presentation.matplotlib_bands_density (bands, ax_right, 100, orientation =
— 'portrait')

ax_right.set_ylabel('")

pyplot.show ()

Example: Density of states

To plot an accurate density of states (DoS) a large enough grid is required. Following is an example of a density of
states of graphene.

from dfttools.types import Basis, Grid
from dfttools import presentation

from matplotlib import pyplot
from numericalunits import eV
import numpy

A reciprocal basis
basis = Basis((1,1,1,0,0,-0.5), kind = 'triclinic', meta = {"Fermi": 0})

Grid shape
shape = (50,50,1)

A dummy grid with correct grid coordinates and empty grid values
grid = Grid(
basis,
tuple (numpy.linspace(0,1,x, endpoint = False)+.5/x for x in shape),
numpy.zeros (shape+(2,), dtype = numpy.float64d),

-

Calculate graphene band

k = grid.cartesian () *numpy.pi/3.%*.5%2

e = (l+4»numpy.cos(k[...,1])**2 + 4dxnumpy.cos(k[...,1])*numpy.cos(k[...,0]*x3.%x%x.5))*x*.
—5%xeV

Set the band values
grid.values[...,0] = -e
grid.values[...,1] = e

presentation.matplotlib_bands_density(grid, pyplot.gca(), 200, energy_range = (-1, 1))
pyplot.show ()

3.2. Band structure 11

DFT Tools Documentation, Release 0.0

Example: K-point grids: density of states and interpolation

They key point of presenting the density of states from a file is converting the band structure to grid via UnitCell.
as_grid. This only works if you indeed calculated band energies on a grid. Note that while both Grid and
UnitCell can be used for DoS, the former one is considerably more accurate.

from dfttools.simple import parse
from dfttools import presentation

from matplotlib import pyplot
with open("plot.py.data",'r') as f:

Retrieve the last band structure from the file
bands = parse (f, "band-structure") [-1]

Convert to a grid
grid = bands.as_grid()

Plot both

presentation.matplotlib_bands_density (bands, pyplot.gca(), 200, energy_range = (-
2, 2), label = "bands")

presentation.matplotlib_bands_density(grid, pyplot.gca(), 200, energy_range = (-
2, 2), label = "grid")

pyplot.legend()

pyplot.show ()

One can also plot the bands by interpolating data on the grid. The quality of the figure depends on the grid size and
interpolation methods.

from dfttools.simple import parse
from dfttools import presentation

import numpy
from matplotlib import pyplot

with open("plot.py.data",'r') as f:

Retrieve the last band structure from the file
bands = parse (f, "band-structure")[-1]

Convert to a grid
grid = bands.as_grid()

Interpolate
kp_path = numpy.linspace(0,1) [:,numpy.newaxis] » ((1./3,2./3,0),)
bands = grid.interpolate_to_cell (kp_path)

Plot
presentation.matplotlib_bands (bands, pyplot.gcal())
pyplot.show ()

Example: Band structure with weights

The band structure with weights is plotted using weights keyword argument. The weights array is just numbers
assigned to each k-point and each band.

12 Chapter 3. Examples

DFT Tools Documentation, Release 0.0

from dfttools.types import Basis, UnitCell
from dfttools import presentation

from matplotlib import pyplot
from numericalunits import eV
import numpy

A reciprocal basis
basis = Basis((1,1,1,0,0,-0.5), kind = '"triclinic', meta = {"Fermi": 0})

G-K path
kp = numpy.linspace(0,1,100) [:,numpy.newaxis] * numpy.array (((1./3,2./3,0),))

A dummy grid UnitCell with correct kp-path
bands = UnitCell (

basis,

kp,

numpy.zeros ((100,2), dtype = numpy.float64),

-

Calculate graphene band

k = bands.cartesian () numpy.pi/3.%*.5%2

e = (l+4xnumpy.cos(k[...,1])**2 + 4dxnumpy.cos(k[...,1])numpy.cos(k[...,0]*x3.%x%.5))*x*.
—5xeV

Set the band values
bands.values[...,0] = -e
bands.values[...,1] = e

Assign some weights
weights = bands.values.copy ()
weights -= weights.min ()
weights /= weights.max ()

Prepare axes
ax_left = pyplot.subplot2grid((1,3), (0, 0), colspan=2)
ax_right = pyplot.subplot2grid((1,3), (0, 2))

Plot bands
p = presentation.matplotlib_bands (bands,ax_left,weights = weights)

presentation.matplotlib_bands_density (bands, ax_right, 100, orientation = 'portrait')
presentation.matplotlib_bands_density (bands, ax_right, 100, orientation = 'portrait', |
—weights = weights, use_fill = True, color = "#ARAAFE")

ax_right.set_ylabel('")
pyplot.colorbar (p)
pyplot.show ()

Data on the grid

Plotting of data (charge, potential, density, etc.) on a 3D grid is very straightforward.

from dfttools.types import Basis, Grid
from dfttools import presentation

3.3. Data on the grid 13

DFT Tools Documentation, Release 0.0

from numericalunits import angstrom
from matplotlib import pyplot
import numpy

grid = Grid(
Basis ((lxangstrom, 1xangstrom, lrangstrom,0,0,-0.5), kind = 'triclinic'),
(
numpy .linspace (0,1, 30,endpoint = False),
numpy .linspace (0,1, 30,endpoint = False),
numpy.linspace (0,1, 30,endpoint = False),
),
numpy.zeros ((30,30,30)),
)
grid.values = numpy.prod(numpy.sin(grid.explicit_coordinates () *2*numpy.pi), axis = -1)

presentation.matplotlib_scalar (grid, pyplot.gca(), (0.1,0.1,0.1), 'z', show_cell =
—True)
pyplot.show ()

14 Chapter 3. Examples

CHAPTER 4

Package contents

dfttools

dfttools.formatters

dfttools.presentation

dfttools.simple

dfttools.types

dfttools.parsers

dfttools.parsers.
dfttools.parsers.
dfttools.parsers.
dfttools.parsers.
dfttools.parsers.

dfttools.parsers

elk
generic
openmx
ge

structure

.vasp

15

DFT Tools Documentation, Release 0.0

16 Chapter 4. Package contents

CHAPTER B

Contributing to DFT Tools

This page is under construction. Contributions are welcome on github.

17

https://github.com/pulkin/dfttools/

DFT Tools Documentation, Release 0.0

18 Chapter 5. Contributing to DFT Tools

CHAPTER O

Indices and tables

* genindex
* modindex

e search

19

	Introduction to DFT Tools
	Getting started
	Installing
	Using

	Examples
	Atomic structure
	Band structure
	Data on the grid

	Package contents
	dfttools
	dfttools.parsers

	Contributing to DFT Tools
	Indices and tables

